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A fourth-order compact difference scheme with unequal mesh sizes in different co-
ordinate directions is employed to discretize a two-dimensional Poisson equation in
a rectangular domain. Multigrid methods using a partial semicoarsening strategy and
line Gauss–Seidel relaxation are designed to solve the resulting sparse linear systems.
Numerical experiments are conducted to test the accuracy of the fourth-order com-
pact difference scheme and to compare it with the standard second-order difference
scheme. Convergence behavior of the partial semicoarsening and line Gauss–Seidel
relaxation multigrid methods is examined experimentally. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

We seek high-accuracy numerical solution of the two-dimensional (2D) Poisson equation

uxx (x, y) + uyy(x, y) = f (x, y), (x, y) ∈ �, (1)

where � is a rectangular domain, or a union of rectangular domains, with suitable bound-
ary conditions defined on ∂�. The solution u(x, y) and the forcing function f (x, y) are
assumed to be sufficiently smooth and to have the required continuous partial derivatives.
For convenience, we consider a rectangular domain � = [0, Lx ] × [0, L y]. Here the sub-
scripts are not derivatives. We discretize � with uniform mesh sizes �x and �y in the x
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and y coordinate directions. Nx = Lx/�x and Ny = L y/�y are the numbers of uniform
intervals along the x and y coordinate directions, respectively. The mesh points are (xi , y j ),
with xi = i�x and y j = j�y, 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny . In the sequel, we may also use
the index pair (i, j) to represent the mesh point (xi , y j ).

The standard second-order central-difference operators defined at (i, j) are

δ2
x ui, j = ui+1, j − 2ui, j + ui−1, j

�x2
, δ2

yui, j = ui, j+1 − 2ui, j + ui, j−1

�y2
.

Equation (1) can be discretized at a given grid point (xi , y j ) as

δ2
x ui, j + δ2

yui, j = fi, j + O(�2), (2)

where O(�2) denotes the truncated terms on the order of O(�x2 + �y2).
Although uniform finite-difference discretization using equal mesh size in both the x and

y directions is simple to implement, there are certain situations in which the use of unequal
mesh sizes in different coordinate directions is more cost effective. In those situations, the
physical quantity modeled may have uneven distribution in different directions. A typical
example is to model the temperature distribution in a thin rod, in which the physical domain
in one direction is much longer than that in the other direction. Another example is in
microscale heat-transfer modeling problems, in which the thickness of one dimension is at
the microscale, but those of the other dimensions are not [3, 13].

The efforts to compute a more accurate solution using limited grid sizes have directed
researchers’ attention to developing high-order compact finite-difference discretization
schemes. In the context of fourth-order compact finite-difference discretizations, much re-
search and many applications have been focused on equal-mesh-size discretizations [8, 11].
This article discusses the use of fourth-order compact unequal-mesh-size discretizations
for solving 2D Poisson equations and the design of specialized multigrid methods for such
applications.

2. FOURTH-ORDER COMPACT APPROXIMATIONS

The fourth-order compact approximation of a 1D Poisson equation can be written as [8]

δ2
x ui =

(
1 + �x2

12
δ2

x

)
fi + O(�x4). (3)

This fourth-order compact approximation is different from the second-order approxima-
tion (2) only in the approximation of the right-hand-side function f . Equation (3) can be
formulated symbolically as [9]

(
1 + �x2

12
δ2

x

)−1

δ2
x ui = fi + O(�x4). (4)

Here the operator (1 + �x2

12 δ2
x )

−1 has symbolic meaning only. In application, the fourth-
order compact difference scheme is given by Eq. (3), not by Eq. (4). An analogous symbolic
fourth-order compact approximation operator can be obtained for the y variable.



172 JUN ZHANG

We can apply the symbolic fourth-order compact approximation operators to the second
derivatives uxx and uyy in Eq. (1), respectively. This yields symbolically [9]

(
1 + �x2

12
δ2

x

)−1

δ2
x ui, j +

(
1 + �y2

12
δ2

y

)−1

δ2
yui, j = fi, j + O(�4), (5)

where O(�4) denotes the truncated terms on the order of O(�x4 + �y4). Applying the
symbolic operators, we have

(
1 + �y2

12
δ2

y

)
δ2

x ui, j +
(

1 + �x2

12
δ2

x

)
δ2

yui, j =
(

1 + �x2

12
δ2

x

)(
1 + �y2

12
δ2

y

)
fi, j + O(�4)

=
[

1 + 1

12

(�x2δ2
x + �y2δ2

y

)]
fi, j + O(�4).

Here we absorbed the O(�x2 · �y2) term into the O(�4) term. After some rearrangement
and dropping the O(�4) term, the general fourth-order compact approximation scheme for
a 2D Poisson equation is given by

(
δ2

x + δ2
y

)
ui, j + 1

12
(�x2 + �y2)δ2

xδ
2
yui, j = fi, j + 1

12

(�x2δ2
x + �y2δ2

y

)
fi, j + O(�4).

(6)

In the special case with �x = �y, the approximation formula (6) is the same as for
Mehrstellen [2]. Various multigrid implementation strategies with Mehrstellen are discussed
and compared with the standard second-order central-difference scheme in [6].

In the general case, let us denote the mesh aspect ratio γ = �x/�y. We have from Eq. (6)
the general fourth-order compact discretization scheme, with a truncation error on the order
of O(�4):

(1 + γ 2)(ui+1, j+1 + ui+1, j−1 + ui−1, j+1 + ui−1, j−1)/2 + (5γ 2 − 1)(ui, j+1 + ui, j−1)

+ (5 − γ 2)(ui+1, j + ui−1, j ) − 10(1 + γ 2)ui, j

= �x2(8 fi, j + fi+1, j + fi−1, j + fi, j+1 + fi, j−1)/2. (7)

The sparse linear system formed by equations of the form (7) at all interior grid points has
nine nonzero diagonals.

We remark that exactly the same discrete equation can be obtained by using equal-mesh-
size discretization on a transformed equation. The mathematical formulation, multigrid
implementations, and numerical experiments with fourth-order compact difference schemes
for more general nonuniform grids are discussed in [5]. A mapping ȳ = γ y changes the y
direction domain from [0, L y] to [0, γ L y] and Eq. (1) to an anisotropic Poisson equation
uxx (x, ȳ) + γ 2uȳ ȳ(x, ȳ) = f (x, ȳ), on which the uniform equal-mesh-size fourth-order
compact discretization scheme can be applied. However, direct discretization using unequal
mesh sizes may be more convenient in certain situations to maintain the shape of the physical
domain. A typical situation is in local mesh refinement with patched grids.
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3. SPECIALIZED MULTIGRID METHODS

Both the fourth-order compact difference scheme and the second-order central-difference
scheme result in sparse linear systems which can be solved efficiently by multigrid methods
[10]. The multigrid method utilizes some relaxation method to remove high-frequency
errors and makes use of coarse grid correction to remove smooth errors. For solving 2D
and 3D Poisson equations discretized by the standard fourth-order compact difference
schemes (with equal mesh size), efficient multigrid methods are implemented in [6, 12]. It
is shown that the fourth-order compact difference schemes are more cost effective than the
corresponding second-order central-difference scheme with the multigrid methods.

However, for solving an anisotropic Poisson equation, or, equivalently, a Poisson equation
discretized with unequal mesh sizes, a standard multigrid method with a point Gauss–Seidel-
type relaxation and standard mesh coarsening strategy (the coarse grid mesh sizes double
that of the fine grid) does not work very well [10]. There are at least two strategies to
treat linear systems arising from discretized anisotropic equations. The first strategy is to
use line relaxation to replace point relaxation; e.g., line Gauss–Seidel relaxation can be
shown to be very effective in removing high-frequency errors in the dominant direction
with large coefficients [10]. Each line relaxation requires a forward solution followed by
a back substitution. The second strategy to deal with anisotropy is to use semicoarsening;
i.e., mesh coarsening is only performed along the dominant direction. The mesh size along
the other direction is not coarsened [7].

For the particular problem considered in this paper, the dominant direction is always either
the x or the y direction, but not both. So either a single-line relaxation or a semicoarsening
along one direction will suffice. To simplify our discussion without loss of generality,
we assume that �x ≤ �y with γ ≤ 1. We also assume � = [0, 1] × [0, 1]. For efficient
implementation of multigrid methods, we further assume that Nx = 2nx , Ny = 2ny for some
positive integers nx > 1 and ny > 1. By our assumptions, it is easy to see that nx ≥ ny and
γ = 2ny−nx .

3.1. Line Relaxation

Since x is the dominant direction, we only perform line relaxation along the x direction
on each successive grid. The successive grids are coarsened in both the x and y directions.
We point out that with our assumption, Nx > Ny holds for all grids. On the coarsest grid,
Ny = 2 and there is a 1D linear system with (Nx − 1) unknowns along the x direction. The
line relaxation is a direct solver on this coarsest grid. Since the standard coarsening strategy
maintains the mesh aspect ratio γ on all grids, the discrete equations on all grids are the
same.

Let us assume that the grid points are ordered lexicographically, i.e., first from left to right
along the x direction, then from bottom to top along the y direction. The coefficient matrix of
the fourth-order compact difference scheme with this ordering can be written as a block tri-
diagonal matrix of block order (Ny − 1) (the order of the coefficient matrix A is (Nx − 1) ×
(Ny − 1), where A = diag[A1, A0, A1], and where A0 = diag[5 − γ 2, −10(1 + γ 2), 5 −
γ 2], A1 = diag[(1 + γ 2)/2, 5γ 2 − 1, (1 + γ 2)/2] are symmetric tridiagonal submatrices
of the order (Nx − 1)). They represent the submatrix of each grid line along the x direction.
Thus a line Gauss–Seidel relaxation is carried out by solving A0u j = f j − A1(u j−1 + u j+1)

for each line j = 1, 2, . . . , (Ny − 1). Here u j is part of the solution vector representing
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the grid points on the j th line, and f j is the corresponding part of the right-hand-side vector.
A0 needs only to be factored once on each level, since the matrix A has constant blocks
which do not change from one grid line to another. Hence the factorization cost of A0 is
negligible.

In multigrid method with line Gauss–Seidel relaxations, we use standard bilinear inter-
polation to transfer corrections from a coarse grid to a fine grid, and we use a full-weighting
scheme to project residual from a fine grid to a coarse grid [6].

3.2. Partial Semicoarsening

In the implementation of semicoarsening strategy, every other grid line along the x
direction is eliminated from a fine grid to a coarse grid. Since the mesh aspect ratio γ is
related to the relative values of �x and �y, we have different discrete equations on different
grids with different γ (see Eq. (7)). Thus, inevitably, there will be a coarse grid on which
Nx = Ny . On this coarse grid, the discrete equation is actually the standard Poisson equation
(with γ = 1). Starting from this grid, the following coarsening strategy will be standard full
coarsening; i.e., every other grid lines in both the x and y directions is eliminated. So we
call this specialized coarsening strategy partial semicoarsening strategy. As in standard
multigrid method, the coarsest grid will have only one unknown.

For relaxation methods (smoothers), we use a point Gauss–Seidel relaxation in lexico-
graphical ordering, in red–black ordering, and in four-color ordering. We point out that the
red–black ordering with the fourth-order compact difference scheme does not decouple the
grid points completely, so there is no inherent parallelism drawn from this implementation.
However, red–black Gauss–Seidel relaxation is shown to have a better smoothing effect than
lexicographical Gauss–Seidel relaxation [6]. The four-color Gauss–Seidel relaxation does
decouple the grid points into four subgroups; each subgroup with a different color can be up-
dated independently. This implementation embodies inherent parallelism to Gauss–Seidel
relaxation [1]. Experimental results also show that four-color Gauss–Seidel relaxation has
a better smoothing effect than the lexicographical Gauss–Seidel relaxation [6].

Mulder [7] argues that since point relaxation has no effect on the weak direction (here the y
direction), the residual (error) components along the y direction may not be smoothed. If the
initial residual contains high-frequency components in the y direction, these high-frequency
components will remain. Standard residual projection operators such as the full-weighting
scheme will cause cancellation. As a result, these residual components will not show up on
the coarse grid and cannot be removed by the coarse grid correction strategy.

For residual projection, we use a one-way average operator. Assume that x is the dominant
direction. The residual at the grid points corresponding to the coarse grid points is averaged
with respect to its two neighboring grid points in the x direction only. No averaging is
performed with respect to the y direction. Letting ri, j be the residual at fine grid point (i, j),
and r̄ī, j the corresponding coarse grid residual, we have i = 2ī , and

r̄ī, j = 4 × 1

4
(ri−1, j + 2ri, j + ri+1, j ) = ri−1, j + 2ri, j + ri+1, j .

The factor 4 in the middle of the above formula represents the right-hand-side difference in
�x2 between the fine and the coarse grids.

For interpolation operator, we use a similar strategy. Corrections for the approximate
solution at fine grid points corresponding to the coarse grid points are transfered directly.
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Corrections for other fine grid points take the average of the neighboring two grid points in
the x direction only. Again, assuming i = 2ī , we write

ri−1, j = 1

2
(r̄ī, j + r̄ī+1, j ), ri, j = r̄ī, j .

In our implementation, the multigrid methods with the partial semicoarsening strategy use
these one-way residual restriction and correction interpolation operators, regardless of the
particular relaxation method used. However, once the grid is reduced to have equal mesh size
in both directions, the standard full-coarsening strategy is used with the standard bilinear
interpolation and full-weighting operators [6].

4. NUMERICAL EXPERIMENTS

Numerical experiments are conducted to solve a 2D Poisson equation (1) on the unit
square domain [0, 1] × [0, 1]. The right-hand-side function and the Dirichlet boundary
condition are prescribed to satisfy the exact solution u(x, y) = sin(100πx) cos(2πy). This
function is constructed so that it changes more rapidly in the x direction than in the y direc-
tion. Hence, we use 2D mesh with Nx ≥ Ny . All numerical experiments and comparisons
should be equally valid if the solution changes more rapidly in the y direction, with the
multigrid methods being modified for the changed dominant direction.

The fourth-order compact difference scheme is compared against the standard central
difference scheme, in terms of solution accuracy, multigrid convergence rate, and CPU
timing. All multigrid methods use V cycle algorithm; the coarsest grid is the one with at
least one dimension being the coarsest possible. One presmoothing and one postsmoothing
are applied at each level. The initial guess is the zero vector. The iteration stops when
the Euclidean norm (2-norm) of the residual vector is reduced by 10−10. The maximum
absolute error reported is the maximum absolute error between the computed solution at
convergence and the exact solution over the entire fine grid points. The code is written in
Fortran 77 programming language in double precision.

4.1. Comparison of Second- and Fourth-Order Difference Schemes

We first compare the fourth-order compact difference scheme with the standard second-
order central difference scheme using a multigrid method with a line Gauss–Seidel relax-
ation. Table I compares the number of multigrid iterations (V cycles, I ) and the correspond-
ing CPU time (T ) in seconds required for convergence. We see that the line Gauss–Seidel
relaxation multigrid methods with these two discretization schemes have approximately
the same convergence rate. With fine mesh discretizations Nx = Ny ≥ 512; the multigrid
method with the fourth-order compact difference scheme converges slightly faster than that
with the second-order difference scheme. The fourth-order compact difference scheme is
more expensive than the second-order difference scheme with the same discretization pa-
rameters, Nx and Ny . This is no surprise, as the number of arithmetic operations in the
fourth-order compact difference scheme is more than that in the second-order difference
scheme. However, the test results in Table II show that the solution computed from the
fourth-order compact difference scheme is much more accurate than that computed from
the second-order difference scheme.
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TABLE I

Comparison of Iteration Counts (I) and CPU Seconds (T) for a Multigrid Method with

Different Discretization Schemes and with Line Gauss–Seidel Relaxation

Ny = 64 Ny = 128 Ny = 256 Ny = 512 Ny = 1024

Scheme Nx I T I T I T I T I T

Second order 64 11 0.09
Fourth order 10 0.10

Second order 128 9 0.14 11 0.34
Fourth order 10 0.19 11 0.41

Second order 256 10 0.30 11 0.66 11 1.41
Fourth order 10 0.37 11 0.83 11 1.72

Second order 512 10 0.61 11 1.40 11 2.87 12 6.30
Fourth order 10 0.76 11 1.74 11 3.49 11 7.10

Second order 1024 10 1.37 11 3.13 11 6.40 11 12.41 12 28.03
Fourth order 10 1.79 11 3.94 11 7.97 11 15.97 11 32.95

In order to justify the fourth-order compact difference scheme and the use of unequal
mesh sizes in two different coordinate directions, we investigate the computational cost
(CPU time) required for computing an approximate solution with a given accuracy; e.g.,
in Table II, we find that the computed solution with a maximum absolute error around
8.31 × 10−5 from the second-order scheme uses Nx = 1024, Ny = 128. The data in Table I
shows that the cost is 3.13 CPU seconds. For the fourth-order compact difference scheme,
a more accurate approximate solution, can be computed with Nx = 128, Ny = 64 (see
row 3, Table II). The corresponding data in Table I shows that the computational cost of
the fourth-order compact difference scheme is 0.19 CPU seconds. Thus the fourth-order
compact difference scheme is about 16 times faster than the second-order difference scheme.
Similar comparisons can be made with other data to reach similar conclusions.

The data in Tables I and II also indicate the advantage of using unequal-mesh-size dis-
cretization for both the second- and the fourth-order compact difference schemes. The data

TABLE II

Comparison of Maximum Absolute Errors of the Computed Approximate Solutions from

Different Discretization Schemes

Scheme Nx Ny = 64 Ny = 128 Ny = 256 Ny = 512 Ny = 1024

Second order 64 1.95 (−2)
Fourth order 4.87 (−4)

Second order 128 4.87 (−3) 4.85 (−3)
Fourth order 1.06 (−5) 1.36 (−6)

Second order 256 1.24 (−3) 1.22 (−3) 1.21 (−3)
Fourth order 8.39 (−8) 6.58 (−7) 8.46 (−7)

Second order 512 3.33 (−4) 3.09 (−4) 3.04 (−4) 3.02 (−4)
Fourth order 1.80 (−7) 5.27 (−9) 4.11 (−8) 5.29 (−8)

Second order 1024 1.06 (−4) 8.31 (−5) 7.74 (−5) 7.59 (−5) 7.55 (−5)
Fourth order 4.46 (−8) 1.13 (−8) 3.30 (−10) 2.57 (−9) 3.30 (−9)

Note. 1.95 (−2) = 1.95 × 10−2.
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in Table I show that the CPU seconds are more than doubled when either Nx or Ny is
doubled. However, the results in Table II show that increasing Ny does not always lead to
a reasonable increase in accuracy (small error) in the computed solution; e.g., the data in
Table II show that for the fourth-order compact difference scheme, the least-error 3.30 ×
10−10 is achieved with Nx = 1024, Ny = 256 in 7.97 CPU seconds (Table I). Use of equal-
mesh Nx = Ny = 1024 does not compute more accurate solutions. The cost, however, is
increased to 32.95 CPU seconds.

4.2. Comparison of Different Multigrid Methods

We further compare the convergence histories of a full-coarsening multigrid method
with four-color Gauss–Seidel relaxation, a semicoarsening multigrid method with four-color
Gauss–Seidel relaxation, and a multigrid method with full coarsening and line Gauss–Seidel
relaxation. We first choose Nx = 512 and Ny = 256 so that the anisotropy is modest. The left
panel of Fig. 1 shows that both semicoarsening and line Gauss–Seidel relaxation multigrid
methods converge quickly, but the standard full-coarsening multigrid method takes more
iterations to converge.

In the right panel of Fig. 1, we increase the anisotropy by choosing Nx = 512 and
Ny = 128. We can see that the convergence rates of both the semicoarsening and line
Gauss–Seidel relaxation multigrid methods are barely affected by the change of mesh size
in the y direction. However, the number of full-coarsening multigrid iterations increases
substantially. It takes 81 iterations for the standard full-coarsening multigrid method to
converge. In comparison, the number of semicoarsening multigrid iterations is 11, and that
of the line Gauss–Seidel relaxation multigrid method is 12. These comparisons justify our
efforts to develop specialized multigrid methods for this application.

4.3. Comparison of Different Multigrid Relaxation Schemes

For the fourth-order compact difference scheme, we compare multigrid methods with
different Gauss–Seidel relaxation schemes. In Table III, the multigrid methods with line
Gauss–Seidel relaxation (line GS), the point Gauss–Seidel relaxation in lexicographical
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FIG. 1. Comparison of convergence rates of a full-coarsening multigrid method (solid line), a semicoarsening
multigrid method (dashed line), and a multigrid method with line Gauss–Seidel relaxation (dash-dot line). On the
finest grid, Nx = 512; Ny = 256 for the left panel and Ny = 128 for the right.
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TABLE III

Comparison of Iteration Counts (I) and CPU Seconds (T ) for Different Multigrid Smoothers

with the Fourth-Order Compact Difference Scheme

Ny = 64 Ny = 128 Ny = 256 Ny = 512 Ny = 1024

Smoother Nx I T I T I T I T I T

Line GS 64 10 0.09
Natural GS 11 0.08
Red–black GS 8 0.06
Four-color GS 9 0.08

Line GS 128 11 0.19 11 0.41
Natural GS 12 0.12 11 0.32
Red–black GS 8 0.15 9 0.29
Four-color GS 9 0.18 9 0.30

Line GS 256 10 0.36 11 0.84 11 1.73
Natural GS 13 0.50 12 0.88 11 1.34
Red–black GS 10 0.40 9 0.70 9 1.23
Four-color GS 10 0.43 9 0.74 10 1.50

Line GS 512 10 0.77 11 1.74 11 3.50 11 7.13
Natural GS 14 1.11 13 2.08 12 3.60 12 5.90
Red–black GS 11 0.94 11 1.95 9 3.03 9 4.97
Four-color GS 10 0.93 10 1.96 10 3.80 10 6.22

Line GS 1024 10 1.78 11 3.94 11 7.94 11 15.97 11 32.83
Natural GS 14 2.73 14 5.51 13 10.03 12 17.18 12 30.51
Red–black GS 11 2.37 12 5.20 11 9.43 9 14.46 10 27.93
Four-color GS 10 2.38 10 4.90 10 9.73 10 18.21 10 31.09

ordering (natural GS), the point Gauss–Seidel relaxation in red–black ordering (red–black
GS), and the point Gauss–Seidel relaxation in four-color ordering (four-color GS) are
compared in terms of the number of iterations and CPU time in seconds. All point relaxations
are implemented with semicoarsening if Nx 
= Ny .

The test results demonstrate the superb robustness of both line GS and four-color GS
relaxation schemes. The numbers of multigrid iterations with these two relaxation schemes
are least affected by the variation of Nx or Ny . The red–black GS is seen to be more robust
than the lexicographical GS. In a few cases, the red–black GS relaxation achieves the fewest
number of iterations among the four relaxation schemes compared. This is the case, e.g.,
when Nx = 1024, Ny = 512.

However, the data in Table III indicate that the relaxation scheme with a small number of
iterations is not necessarily the one that takes a small number of CPU seconds. In fact, if the
numbers of iterations are the same, line GS and natural GS are faster than both red–black
GS and four-color GS. The difference is caused by the cache effect of computer memory
due to data locality. In both line and lexicographical relaxations, all grid points are visited
and the corresponding data are brought into cache just once in each iteration. However, in
our current implementation, red–black GS visits the entire grid twice and four-color GS
goes over the entire grid four times in each iteration. The same data need to be brought
into the computer cache multiple times in the colored relaxation cases. This causes more
cache misses and delay in computation. Special code writing can alleviate such a cache



POISSON EQUATION WITH UNEQUAL MESH SIZE 179

effect and avoid multiple data movements in colored relaxations [4]. These cache-aware
multigrid methods are beyond the scope of this paper.

5. CONCLUDING REMARKS

We have studied a fourth-order compact difference scheme with unequal mesh sizes for
discretizing a 2D Poisson equation. Special multigrid methods are developed to solve the
resulting sparse linear systems efficiently. The multigrid methods with line Gauss–Seidel
relaxation or partial semicoarsening are found to work very well in solving the fourth-order
compact-scheme-discretized 2D Poisson equation. In particular, partial semicoarsening with
red–black and four-color Gauss–Seidel relaxations is shown to be robust with respect to the
variation in the mesh aspect ratio. The four-color Gauss–Seidel relaxation is particularly
attractive due to its improved convergence rate and inherent parallelism, compared to the
standard natural Gauss–Seidel relaxation.

The proposed fourth-order compact discretization methodology may be generalized to
three dimensions straightforwardly. However, the analogous generalizations of specialized
multigrid methods to 3D are not straightforward; at least their implementations are nontriv-
ial. Line Gauss–Seidel relaxation in 2D will be generalized to plane relaxation in 3D, with
each planewise solution being obtained by using line relaxations. Partial semicoarsening is
also complicated, since there are two directions in which the mesh size may change.
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